• Login
    View Item 
    •   Home
    • Research, Student
    • Theses and Dissertations
    • View Item
    •   Home
    • Research, Student
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of MercerCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About URSA

    Collecting PolicyLicense AgreementDigitization SpecificationsRemoval PolicyHarmful Language Statement

    Statistics

    Display statistics

    Deciphering the Role of Sumoylation During EBV Replication

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jenkins_mercer_1160N_10360.pdf
    Size:
    992.3Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Jenkins, Jessica L
    Keyword
    Microbiology
    Cellular biology
    2-D08
    EBV
    Ginkgolic acid
    ML-792
    Sumoylation
    TAK-981
    School of Medicine
    Date
    2021
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10898/12784
    Title
    Deciphering the Role of Sumoylation During EBV Replication
    Abstract
    Epstein Barr Virus, a gamma herpes virus, is the known causative agent in infectious mononucleosis and is highly ubiquitous in nature. Although primary infection typically yields no long term issues, viral latency is associated with lymphomas and epithelial cell carcinomas. We documented that the presence of LMP1, the principal EBV oncogene, dysregulates cellular sumoylation processes in lymphoma tissues, modulates innate immune response, and maintains viral latency. Sumoylation is a dynamic process were target proteins are modified with free small ubiquitin like modifier (SUMO) proteins. The SUMO modification is vital for cellular processes including: immune response, DNA damage repair sensing, cell cycle progression, resistance to apoptosis, and metastasis. Several cancers display dysregulation of the sumoylation process, making the SUMO machinery a sufficient target for anti-cancer therapies. Known sumoylation inhibitors include natural extracts and antibiotics. However, many of these agents are nonspecific and/or demonstrate adverse effects like allergic reactions with botanical extracts. This piqued our interest in investigating synthetically engineered compounds along with a well-known natural extract inhibitor, Ginkgolic Acid (GA). ML-792, 2-D08, and TAK-981 are synthetically derived small molecule inhibitors that were identified as selective SUMO-inhibitors, interfering at different stages of the sumoylation process. We hypothesize that the SUMO-inhibitors will have therapeutic effects for the treatment of EBV-associated malignancies by modulating the EBV life-cycle. Results showed that each of the tested inhibitors decreased global levels of sumoylated proteins, though ML-792 and TAK-981 showed greater inhibition when compared to GA and 2-D08. Additionally, the SUMO-inhibitors induced low levels of spontaneous reactivation in latently infected B cells. We also confirm that sumoylation is important for maintaining EBV latency and lytic replication in B cells. Lastly, we note anti-viral potential for each tested inhibitor, particularly GA and 2-D08 have a better affect than ML-792 and TAK-981 in this regard. Of the tested sumoylation inhibitors, we now propose 2-D08 as the best potential therapeutic drug to aid the treatment of EBV-associated malignancies due to its ability to significantly reduce viral DNA levels following induced reactivation and decrease the ability of produced virus to infect additional cells.
    Collections
    Theses and Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.