• Login
    View Item 
    •   Home
    • Research, Student
    • Theses and Dissertations
    • View Item
    •   Home
    • Research, Student
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of MercerCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About URSA

    Collecting PolicyLicense AgreementDigitization SpecificationsRemoval PolicyHarmful Language Statement

    Statistics

    Display statistics

    Oral Microparticulate Prostate Cancer Vaccine: A Promising Immunotherapeutic Approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Parenky_mercer_1160E_10321_1.pdf
    Size:
    34.93Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Parenky, Ashwin
    Keyword
    Pharmaceutical sciences
    Cancer Immunotherapy
    College of Pharmacy
    Vaccine
    Spray Drying
    Prostate Cancer
    Microparticle
    Date
    2016
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10898/12640
    Title
    Oral Microparticulate Prostate Cancer Vaccine: A Promising Immunotherapeutic Approach
    Abstract
    Prostate cancer is one of the leading causes of cancer-related deaths among men in the United States. Currently, there are 5 new agants approved in the United States against prostate cancer which include Sipuleucel-T, cabazitaxel, abiraterone acetate, enzalutamide and radium-223. Introduction of these agents into the clinic are important strides; however, resistance to chemotherapeutic agents is still a significant challenge, Furthermore, when patients suffer from recurrence of prostate cancer, survival is less than five months. Hence, there is an urgent need to investigate alternative approaches to treat castration resistant prostate cancer and prevent relapse. Immunotherapeutic approaches to treat cancer are under intense investigation owing to their specificity and potency to eliminate tumors. One of the most intensely studied areas in the cancer research is identification of cancer antigens that can help indicate progression of cancer, in certain scenarios these antigens may also serve as vaccines for cancer immunotherapy. These cancer antigens are important because they boost the immune system to specifically recognize and kill tumors. In our studies, we have investigated two different antigens to combat prostate cancer. Sperm protein-17 and tumor associated antigens extracted from TRAMP C2 murine prostate cancer cell line were investigated as potential therapeutic vaccines. The above mentioned antigens are proteins and protein antigens themselves have poor bioavailability and absorption thus making it difficult to initiate immune response against the cancer. Particulate delivery systems encapsulating protein antigens have been proved to improve the delivery and efficacy of vaccine responses. Thus, particulate delivery systems are crucial in improving the delivery of these potent cancer antigens for a sustained and systemic anti-cancer activity, Another important aspect of vaccine delivery is the route of vaccination owing to its patient compliance and ease of administration. However, several challenges such as harsh gastric environment and tolerance induction has hindered successful clinical effectiveness of oral vaccines. Adjuvants have always been administered along with vaccines for decades. FDA approved vaccines such as Gardasil and Cerverix both have adjuvants to boost immunity. Thus, identifying appropriate adjuvants that will help boost anti-tumor activity is paramount. In order to increase the potency of our vaccine, several toll-like receptor (TLR) and non-TLR adjuvants were also studied. In this study, we have developed an oral microparticulate vaccine encapsulating two distinct antigens against prostate cancer. SP17 and antigens extracted from murine prostate cancer cell line were encapsulated separately in microparticles. Microparticulate vaccines were characterized for their physiochemical properties in vitro and evaluated for their antigenicity on murine dendritic cells. In order to protentiate vaccine efficacy, we also included adjuvants in microparticulate formulations and evaluated their potential to enhance the antigenicity of our vaccine formulations. SP17 administration. Several adjuvants such as R848, MPL, MF59 and alum were selected for future studies in vivo studies. The second part of this project focuses on formulation of a microparticulate vaccine encapsulating tumor associated antigens extracted from a murine prostate cancer cell line (TRAMP C2). We investigated the potential of our formulated vaccine along with two adjuvant microparticles, ALUM and MF59, to boost anti-tumor response against prostate cancer. Finally, to prove the effectiveness of our vaccine and overcome the tumor "immune escape" mechanism in cancer, we also performed a therapeutic in vivo study on a murine prostate cancer model. Encouraging results from the in vivo study demonstrate excellent anti-tumor activity of our therapeutic vaccine. We observed a significant reduction in tumor volume and sustained anti-tumor T-cell activity in vivo. Thus, we could also demonstrate , in our experiments, the importance of combination therapy which inhibits cancer "immune escape" mechanisms and improves vaccine efficacy.
    Collections
    Theses and Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.