Micro-particulate Vaccine for Transdermal Measles Immunization

Devyni Joshi, Rikhav Gala, Mohammad N. Uddin, and Martin J. D’Souza

Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA

INTRODUCTION

Transdermal immunization offers several advantages over subcutaneous delivery:
- Reduced sharps waste
- Painless self-administration of the vaccine
- Exploitation of the rich population of antigen-presenting cells (APCs)
- Better suited for under-developed and developing parts of the world
- Controlled release of antigen
- Improved biological stability

OBJECTIVES

- Microparticulate formulation of Measles Vaccine
- In-Vitro evaluation of microparticulate measles vaccine
- Transdermal Immunization using P.L.E.A.S.E. ablative laser
- Comparison of efficacy of subcutaneous and transdermal immunization

METHODS

- Formulation of spray dried vaccine and adjuvant microparticles using pre-crosslinked BSA polymer matrix
- Characterization and In-Vitro evaluation of the microparticles for their immunogenicity, cytotoxicity and cell uptake
- In-Vivo evaluation of microparticulate vaccine in Swiss Webster mouse model via subcutaneous and transdermal (laser ablation) routes
- Comparison of efficacy of subcutaneous and transdermal routes of administration by comparing the serum antibody levels

RESULTS

Characterization of Microparticles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery yield (%)</td>
<td>91.37 ± 3.1</td>
</tr>
<tr>
<td>Particle size (µm)</td>
<td>3.197 ± 0.8361</td>
</tr>
<tr>
<td>Zeta potential (mV)</td>
<td>-29.4 ± 6.2</td>
</tr>
</tbody>
</table>

In-vitro immunogenicity evaluation

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>Serum IgG Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine MP : SC</td>
<td>8000</td>
</tr>
<tr>
<td>Vaccine + Adj MP : SC</td>
<td>10000</td>
</tr>
<tr>
<td>Laser Ablation Technology</td>
<td>15000</td>
</tr>
</tbody>
</table>

In-vitro cytotoxicity evaluation

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>CD40 Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine MP : SC</td>
<td>8</td>
</tr>
<tr>
<td>Vaccine + Adj MP : SC</td>
<td>16</td>
</tr>
<tr>
<td>Laser Ablation Technology</td>
<td>32</td>
</tr>
</tbody>
</table>

Expression of antigen-presenting molecules

- **MHC I Expression**
 - Vaccine MP : SC
 - Vaccine + Adj MP : SC
 - Laser Ablation Technology
- **MHC II Expression**
 - Vaccine MP : SC
 - Vaccine + Adj MP : SC
 - Laser Ablation Technology

Evaluation of serum antibody levels

- Serum IgG Levels
 - Vaccine MP : SC
 - Vaccine + Adj MP : SC
 - Laser Ablation Technology

CONCLUSION

- Novel, industrially scalable formulation
- Immunogenic, non-cytotoxic microparticles
- Ability to induce both, humoral and cellular adaptive immune response
- Effective transdermal immunization using P.L.E.A.S.E. ablative laser

Transdermal Delivery

- Laser Ablation Technology
 - Laser (ER:YAG) emits light at 2940 nm, corresponds to a major absorption peak of water molecules enabling cold ablation
 - Excitation and evaporation leads to formation of aqueous micropores with a diameter of approx. 150 µm

Microparticulate Vaccine for Transdermal Measles Immunization

Highly contagious infectious disease by Measles virus